3.3.99 \(\int \frac {(a+b x)^{3/2}}{x^4} \, dx\) [299]

Optimal. Leaf size=84 \[ -\frac {b \sqrt {a+b x}}{4 x^2}-\frac {b^2 \sqrt {a+b x}}{8 a x}-\frac {(a+b x)^{3/2}}{3 x^3}+\frac {b^3 \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a}}\right )}{8 a^{3/2}} \]

[Out]

-1/3*(b*x+a)^(3/2)/x^3+1/8*b^3*arctanh((b*x+a)^(1/2)/a^(1/2))/a^(3/2)-1/4*b*(b*x+a)^(1/2)/x^2-1/8*b^2*(b*x+a)^
(1/2)/a/x

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 84, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {43, 44, 65, 214} \begin {gather*} \frac {b^3 \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a}}\right )}{8 a^{3/2}}-\frac {b^2 \sqrt {a+b x}}{8 a x}-\frac {(a+b x)^{3/2}}{3 x^3}-\frac {b \sqrt {a+b x}}{4 x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x)^(3/2)/x^4,x]

[Out]

-1/4*(b*Sqrt[a + b*x])/x^2 - (b^2*Sqrt[a + b*x])/(8*a*x) - (a + b*x)^(3/2)/(3*x^3) + (b^3*ArcTanh[Sqrt[a + b*x
]/Sqrt[a]])/(8*a^(3/2))

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + 1))), x] - Dist[d*(n/(b*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d, n
}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && GtQ[n, 0]

Rule 44

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && LtQ[n, 0]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rubi steps

\begin {align*} \int \frac {(a+b x)^{3/2}}{x^4} \, dx &=-\frac {(a+b x)^{3/2}}{3 x^3}+\frac {1}{2} b \int \frac {\sqrt {a+b x}}{x^3} \, dx\\ &=-\frac {b \sqrt {a+b x}}{4 x^2}-\frac {(a+b x)^{3/2}}{3 x^3}+\frac {1}{8} b^2 \int \frac {1}{x^2 \sqrt {a+b x}} \, dx\\ &=-\frac {b \sqrt {a+b x}}{4 x^2}-\frac {b^2 \sqrt {a+b x}}{8 a x}-\frac {(a+b x)^{3/2}}{3 x^3}-\frac {b^3 \int \frac {1}{x \sqrt {a+b x}} \, dx}{16 a}\\ &=-\frac {b \sqrt {a+b x}}{4 x^2}-\frac {b^2 \sqrt {a+b x}}{8 a x}-\frac {(a+b x)^{3/2}}{3 x^3}-\frac {b^2 \text {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b x}\right )}{8 a}\\ &=-\frac {b \sqrt {a+b x}}{4 x^2}-\frac {b^2 \sqrt {a+b x}}{8 a x}-\frac {(a+b x)^{3/2}}{3 x^3}+\frac {b^3 \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a}}\right )}{8 a^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.10, size = 67, normalized size = 0.80 \begin {gather*} -\frac {\sqrt {a+b x} \left (8 a^2+14 a b x+3 b^2 x^2\right )}{24 a x^3}+\frac {b^3 \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a}}\right )}{8 a^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x)^(3/2)/x^4,x]

[Out]

-1/24*(Sqrt[a + b*x]*(8*a^2 + 14*a*b*x + 3*b^2*x^2))/(a*x^3) + (b^3*ArcTanh[Sqrt[a + b*x]/Sqrt[a]])/(8*a^(3/2)
)

________________________________________________________________________________________

Mathics [B] Leaf count is larger than twice the leaf count of optimal. \(177\) vs. \(2(84)=168\).
time = 5.74, size = 135, normalized size = 1.61 \begin {gather*} -\frac {a^2 b^{\frac {3}{2}} \left (1+\frac {a}{b x}\right )^{\frac {3}{2}}}{3 x^{\frac {3}{2}} \left (a+b x\right )^2}-\frac {11 a b^{\frac {5}{2}} \left (1+\frac {a}{b x}\right )^{\frac {3}{2}}}{12 \sqrt {x} \left (a+b x\right )^2}+\frac {b^3 \text {ArcSinh}\left [\frac {\sqrt {a}}{\sqrt {b} \sqrt {x}}\right ]}{8 a^{\frac {3}{2}}}-\frac {17 b^{\frac {7}{2}} \sqrt {x} \left (1+\frac {a}{b x}\right )^{\frac {3}{2}}}{24 \left (a+b x\right )^2}-\frac {b^{\frac {9}{2}} x^{\frac {3}{2}} \left (1+\frac {a}{b x}\right )^{\frac {3}{2}}}{8 a \left (a+b x\right )^2} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

mathics('Integrate[(a + b*x)^(3/2)/x^4,x]')

[Out]

-a ^ 2 b ^ (3 / 2) (1 + a / (b x)) ^ (3 / 2) / (3 x ^ (3 / 2) (a + b x) ^ 2) - 11 a b ^ (5 / 2) (1 + a / (b x)
) ^ (3 / 2) / (12 Sqrt[x] (a + b x) ^ 2) + b ^ 3 ArcSinh[Sqrt[a] / (Sqrt[b] Sqrt[x])] / (8 a ^ (3 / 2)) - 17 b
 ^ (7 / 2) Sqrt[x] (1 + a / (b x)) ^ (3 / 2) / (24 (a + b x) ^ 2) - b ^ (9 / 2) x ^ (3 / 2) (1 + a / (b x)) ^
(3 / 2) / (8 a (a + b x) ^ 2)

________________________________________________________________________________________

Maple [A]
time = 0.10, size = 64, normalized size = 0.76

method result size
risch \(-\frac {\sqrt {b x +a}\, \left (3 x^{2} b^{2}+14 a b x +8 a^{2}\right )}{24 x^{3} a}+\frac {b^{3} \arctanh \left (\frac {\sqrt {b x +a}}{\sqrt {a}}\right )}{8 a^{\frac {3}{2}}}\) \(56\)
derivativedivides \(2 b^{3} \left (-\frac {\frac {\left (b x +a \right )^{\frac {5}{2}}}{16 a}+\frac {\left (b x +a \right )^{\frac {3}{2}}}{6}-\frac {a \sqrt {b x +a}}{16}}{b^{3} x^{3}}+\frac {\arctanh \left (\frac {\sqrt {b x +a}}{\sqrt {a}}\right )}{16 a^{\frac {3}{2}}}\right )\) \(64\)
default \(2 b^{3} \left (-\frac {\frac {\left (b x +a \right )^{\frac {5}{2}}}{16 a}+\frac {\left (b x +a \right )^{\frac {3}{2}}}{6}-\frac {a \sqrt {b x +a}}{16}}{b^{3} x^{3}}+\frac {\arctanh \left (\frac {\sqrt {b x +a}}{\sqrt {a}}\right )}{16 a^{\frac {3}{2}}}\right )\) \(64\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^(3/2)/x^4,x,method=_RETURNVERBOSE)

[Out]

2*b^3*(-(1/16/a*(b*x+a)^(5/2)+1/6*(b*x+a)^(3/2)-1/16*a*(b*x+a)^(1/2))/b^3/x^3+1/16*arctanh((b*x+a)^(1/2)/a^(1/
2))/a^(3/2))

________________________________________________________________________________________

Maxima [A]
time = 0.37, size = 119, normalized size = 1.42 \begin {gather*} -\frac {b^{3} \log \left (\frac {\sqrt {b x + a} - \sqrt {a}}{\sqrt {b x + a} + \sqrt {a}}\right )}{16 \, a^{\frac {3}{2}}} - \frac {3 \, {\left (b x + a\right )}^{\frac {5}{2}} b^{3} + 8 \, {\left (b x + a\right )}^{\frac {3}{2}} a b^{3} - 3 \, \sqrt {b x + a} a^{2} b^{3}}{24 \, {\left ({\left (b x + a\right )}^{3} a - 3 \, {\left (b x + a\right )}^{2} a^{2} + 3 \, {\left (b x + a\right )} a^{3} - a^{4}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(3/2)/x^4,x, algorithm="maxima")

[Out]

-1/16*b^3*log((sqrt(b*x + a) - sqrt(a))/(sqrt(b*x + a) + sqrt(a)))/a^(3/2) - 1/24*(3*(b*x + a)^(5/2)*b^3 + 8*(
b*x + a)^(3/2)*a*b^3 - 3*sqrt(b*x + a)*a^2*b^3)/((b*x + a)^3*a - 3*(b*x + a)^2*a^2 + 3*(b*x + a)*a^3 - a^4)

________________________________________________________________________________________

Fricas [A]
time = 0.32, size = 145, normalized size = 1.73 \begin {gather*} \left [\frac {3 \, \sqrt {a} b^{3} x^{3} \log \left (\frac {b x + 2 \, \sqrt {b x + a} \sqrt {a} + 2 \, a}{x}\right ) - 2 \, {\left (3 \, a b^{2} x^{2} + 14 \, a^{2} b x + 8 \, a^{3}\right )} \sqrt {b x + a}}{48 \, a^{2} x^{3}}, -\frac {3 \, \sqrt {-a} b^{3} x^{3} \arctan \left (\frac {\sqrt {b x + a} \sqrt {-a}}{a}\right ) + {\left (3 \, a b^{2} x^{2} + 14 \, a^{2} b x + 8 \, a^{3}\right )} \sqrt {b x + a}}{24 \, a^{2} x^{3}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(3/2)/x^4,x, algorithm="fricas")

[Out]

[1/48*(3*sqrt(a)*b^3*x^3*log((b*x + 2*sqrt(b*x + a)*sqrt(a) + 2*a)/x) - 2*(3*a*b^2*x^2 + 14*a^2*b*x + 8*a^3)*s
qrt(b*x + a))/(a^2*x^3), -1/24*(3*sqrt(-a)*b^3*x^3*arctan(sqrt(b*x + a)*sqrt(-a)/a) + (3*a*b^2*x^2 + 14*a^2*b*
x + 8*a^3)*sqrt(b*x + a))/(a^2*x^3)]

________________________________________________________________________________________

Sympy [A]
time = 3.70, size = 124, normalized size = 1.48 \begin {gather*} - \frac {a^{2}}{3 \sqrt {b} x^{\frac {7}{2}} \sqrt {\frac {a}{b x} + 1}} - \frac {11 a \sqrt {b}}{12 x^{\frac {5}{2}} \sqrt {\frac {a}{b x} + 1}} - \frac {17 b^{\frac {3}{2}}}{24 x^{\frac {3}{2}} \sqrt {\frac {a}{b x} + 1}} - \frac {b^{\frac {5}{2}}}{8 a \sqrt {x} \sqrt {\frac {a}{b x} + 1}} + \frac {b^{3} \operatorname {asinh}{\left (\frac {\sqrt {a}}{\sqrt {b} \sqrt {x}} \right )}}{8 a^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**(3/2)/x**4,x)

[Out]

-a**2/(3*sqrt(b)*x**(7/2)*sqrt(a/(b*x) + 1)) - 11*a*sqrt(b)/(12*x**(5/2)*sqrt(a/(b*x) + 1)) - 17*b**(3/2)/(24*
x**(3/2)*sqrt(a/(b*x) + 1)) - b**(5/2)/(8*a*sqrt(x)*sqrt(a/(b*x) + 1)) + b**3*asinh(sqrt(a)/(sqrt(b)*sqrt(x)))
/(8*a**(3/2))

________________________________________________________________________________________

Giac [A]
time = 0.00, size = 116, normalized size = 1.38 \begin {gather*} \frac {\frac {-3 \sqrt {a+b x} \left (a+b x\right )^{2} b^{4}-8 \sqrt {a+b x} \left (a+b x\right ) b^{4} a+3 \sqrt {a+b x} b^{4} a^{2}}{24 a \left (a+b x-a\right )^{3}}-\frac {b^{4} \arctan \left (\frac {\sqrt {a+b x}}{\sqrt {-a}}\right )}{4 a\cdot 2 \sqrt {-a}}}{b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(3/2)/x^4,x)

[Out]

-1/24*(3*b^4*arctan(sqrt(b*x + a)/sqrt(-a))/(sqrt(-a)*a) + (3*(b*x + a)^(5/2)*b^4 + 8*(b*x + a)^(3/2)*a*b^4 -
3*sqrt(b*x + a)*a^2*b^4)/(a*b^3*x^3))/b

________________________________________________________________________________________

Mupad [B]
time = 0.10, size = 64, normalized size = 0.76 \begin {gather*} \frac {a\,\sqrt {a+b\,x}}{8\,x^3}-\frac {{\left (a+b\,x\right )}^{5/2}}{8\,a\,x^3}-\frac {{\left (a+b\,x\right )}^{3/2}}{3\,x^3}-\frac {b^3\,\mathrm {atan}\left (\frac {\sqrt {a+b\,x}\,1{}\mathrm {i}}{\sqrt {a}}\right )\,1{}\mathrm {i}}{8\,a^{3/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x)^(3/2)/x^4,x)

[Out]

(a*(a + b*x)^(1/2))/(8*x^3) - (a + b*x)^(5/2)/(8*a*x^3) - (b^3*atan(((a + b*x)^(1/2)*1i)/a^(1/2))*1i)/(8*a^(3/
2)) - (a + b*x)^(3/2)/(3*x^3)

________________________________________________________________________________________